GAUSS SUMS

ALLAN LIND JENSEN

FOR NEIL KOBLITZ: INTRODUCTION TO ELLIPTIC CURVES AND MODULAR FORMS, CHAPTER 4,
SECTION 2

DEFINITIONS AND FIRST RESULTS

Let n > 0 be an odd integer. The Gauss sums are defined by
_ J\ 2mij/n

(1) S(n) ; (n) e :
I will soon be proven, that is n fails to be square-free, then S(n) = 0. Otherwise,
Theorem 1. (Gauss) When n is a square-free odd integer
(2) S(n) = env/n,
where

(3) - {1 if n=1 mod4

i if n=3 mod4

We need the more general sum

n

(4) S =Y (%) e2mili/n — 3" (%) G2ili/n

Jj=1 JE Z/nZ

If (I,n) = 1, then the map x +— lz is 1 — 1 in Z/nZ. Thus
(1 LGN oritim _ (!
(5) S(n,w(n)‘z (n> =(~)sm.1),
JE€ Z/nZ

or more generally, still assuming (n,l) =1

l
(6) S(n,la) = (—) S(n,a) .
n
To find the values of the Gauss sums for general n, we first reduce to prime powers.

Theorem 2. Assume that m and n are coprime, (m,n) = 1. Then
m\ /n
7 Smn,0) = (=) (=) S(m, DS,
7) (mn,1) = (2 () $6m,0)8 (.
The idea of the proof is to parametrize j = hm + kn, where h € Z/nZ and k € Z/mZ. This works,
because the map

§ = (j mod n, j mod m) + (m~" mod n, k! mod m) x (§ mod n, j mod m)
1
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is 1 — 1. The first is 1 — 1 by the Chinese remainder theorem, the second, because m € (Z/nZ)* and vice

versa.
S(mn,l) = Z (L)e%”j/mn
mn

JEZ/mnZ

_ Z Z (hm + kn) (hm + kn) e27ril(hm+kn)/mn
m n

h€EZ/NL kEL/MTZ

— Z (@) (h_m) e?ﬂ'ilh/ne%rilk/m
m n

h,k
(%) (%) zh: (%) 2milh/n zk: (%) 2milk/m
[l

You can probably see, how this in conjuction with (2) implies the quadratic reciprocity theorem.
Following this line of thought leads to

Theorem 3. Let m,n > 0 be odd, positive integers, that are mutually prime. Then

(8) S(mn,l):S(ELn:l)-%n’l)-amn.

PRIME POWERS

Now, We are ready to work on S(p¥,l). The case v = 1 is covered by (5), which remains true even if p|l.
In that case, S(p,1) =>_. (l) -1=0.

J \P

Assume that v > 2. We parametrize j = ap 4+ b, where 0 < a < p”~!

and 1 < b < p, and compute

Pl ap+b\" . B
S(pu’ l) — Z Z ( ) 6271'1111/1) eQTrzlb/p
a=0 b=1 p
" p b\
— Z e27rila/p”71 Z (_) eQﬂ'ilb/pV
a=0 b=1 p

Unless p”~1|l, the first sum vanishes; if p* =1 { [, then e2™il/P" ™" i5 a non-trivial root of unity, and we sum
over a number of full circles.

We have established,
9) If v > 2 and p* "' {1, then G(p*,1) =0 .

As a special case S(p?) = S(p?,1) = 0, which implies that S(n) = 0, if n is divisible by an integral square.
Finally, write [ = Ap”~!, obtaining

PV71 v
v n— a b i
S Ap 1):21@(;) TN

p
a=1 b=1

There is the special case p|A, and we must distinguish between even and odd values of v. The inner
sum yields

P (8) e p pia
2|y p—1 -1
2fv 0 S
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and the Gauss sum of prime powers becomes

S(p¥, Ap*~1) pIX ptA
(10) 2lv p’ —p ! —p¥ 1
2fv 0 p"~tS(p, A

It turns out, that (10) also holds for v = 1.

THE (GAUSS SUMS NEEDED IN THE BOOK
From now on, n and n; represent odd integers.
The formula (10 can be reformulated the following way

if h>2v+1
2”S( 1) if h=2+1

(11) St p*) = 0 if 0<h<2v, odd
“l.(p—1) if 0<h<2v, even
1 if h=0
and
0 if h>2v
—p?v1 if h=2v
(12) S(ph,p* ) = if 0<h<2v—1, odd

0
phl.(p—1) if 0<h<2v—1, even
1 if h=0

Lemma 1. (p. 188-9) If | is squarefree, write n = non?, where ng is squarefree. Then
L .
(13) S(?’L,Z) _ En (no) M(nl)\/ﬁ Zf TI,1|l
0 otherwise,
where p is the Mobius function.
Write nq = [[p;". Then
S(n, e, = S(no,l HS (p37, e 2,, .
Of course, ¢ P = 1 and €,,,n,2 = €n,-
If some p; )[ I then S(p 12"1,1) = 0. Since [ is squarefree, it also vanishes if v; > 2 It also vanishes, if
pi|no, but in that case nio =0.

In case n1l, and no prime p;|ng, we apply S(p?,1) = —p;, obtaining

5000) = () v en [T = () ot
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COMPUTATION OF by 20 /by,

The final challenge is to derive the expressions for by, 2 /by, where p {1y or pl|lo.
The easy case is p = 2. For odd n, formula (6) results in

221/ v 2
(14) 5(12%) = (—) S(n,1o) = (_) S(n,10) = S(n,lo) ,
n n
Thus
bgar = C'- 15/2_12(1672)11 annfk/QS(n, —lp) = 2k=Dvp,

The case: Odd p||lp.
Write Iy = lop, so that [ = ZNOpQI’Jrl allowing v = 0. In (2.7) we write n = nop”, where p { ng, so that

Lop2v+1 = C( QUH) ZE n 2Sn 1)

hk

-1 V 11— — 5 1%
= C (ki=2) anophno 2 S(nop", —lop® )

b

no,h

b l/ 5 —hk 7 v 7 v —

= C (ké=2) ZEZ:;;L”O p~ % S(no, —lop™ S (0", —lop™ et ey
no,h

-\ h
k 4 -k ~ we [ —I1 v
= 2 V (ké=2) Z ( ) Enoan : S(?’LQ, _ZO) Z Eijplh‘gph P 2 <70> S(pha h2 +1)
h
The value of S(p, h?*1) is only non-zero, when h is even. Thus

b[0p2u+1 = Clogilpy'(kiim Z ( )E n 2 Zp S 2V+1)
pin

—1 i p _k .
_ 012 v (ki—2) (_) k ) (p¥ — 1 E(v+1/_ 2v+1
p do(5)em™> 1+Zp )+ p U (—p )
pin
The parenthesis can be reduced to
v+1 v
Zp(2 k)j Zp (2-K)j=1 _ - (ki=2) (1-p'¥) Zp@fk)j .
j=0
Finally, we obtain
by v 4
15 Zop™" v (ki=2) (2=k)j — (k=2)j
(15) b Zp ]Zop :

which is the formula just above (2.24).
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The case: Odd p 1.

We compute
kE_1q K
bigp>» = : Zfioph(noph) 2 S(nop", —lop™)
’noh
k_ _hk 1 -
= 02 k Q)Uzefl:plhno p 2 S(”OyflOPQU)S(ph;*ZOPQU)Enolfphl
ngh
we (—lo\"
k41 —hk [ —lo B 2uy —1
: (p ) Sp",p™)e

(k= 2)”26 ing * S(no, ~lo) Z‘Enop

(_—1) to obtain

There is only one odd value of h for which S(p", p?) # 0,ie. h=2v+1. In the evaluation of this
21 we can apply €2 —

term we need the observation, that since k + 1 is even, and A = 5=
g\ ML
) gkl

- () (3)" @)

€ mn
? pn P
The odd addend of the sum gives
ghtl —kv—% —lo 2v -1 —1 o k+1 —lo —(k—=2)r—2X\ k+1 —(k=2)v—X\
nopp — | P E;D\/I_)Ep =\ — Eno — | P = Eno X(p)p .
p p p
where x = x(—)»i,- Including the even values leads to
-1, _k — v 4 i i—
(16) by, 20 = Clg BN ek 0738 (no, —lo) [ 14+ x(p)p~F2 24> p 7 (p¥ - p¥ )
pin J=1
This is basically (2.28). We obtain
i, v plh=2v (1 +x(Pp ™+ X, (pCTRT - pBk 1))
b, 1+ x(p)p—
g ph R = 30 ph DI 4y (p)p
1+ x(p)p

v v—1
> T —x(p)pr Y phI
=0

J
The verification of the last expression is elementary, but not trivial. One needs the relation &k = 2\ + 1



