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for Neil Koblitz: Introduction to Elliptic Curves and Modular Forms, Chapter 4,

Section 2

Definitions and first results

Let n > 0 be an odd integer. The Gauss sums are defined by

(1) S(n) =

n
∑

j=1

(

j

n

)

e2πij/n .

I will soon be proven, that is n fails to be square-free, then S(n) = 0. Otherwise,

Theorem 1. (Gauss) When n is a square-free odd integer

(2) S(n) = εn
√
n,

where

(3) εn =

{

1 if n ≡ 1 mod 4
i if n ≡ 3 mod 4

We need the more general sum

(4) S(n, l) =

n
∑

j=1

(

j

n

)

e2πilj/n =
∑

j∈ Z/nZ

(

j

n

)

e2πilj/n.

If (l, n) = 1, then the map x 7→ lx is 1− 1 in Z/nZ. Thus

(5) S(n, l) =

(

l

n

)

∑

j∈ Z/nZ

(

lj

n

)

e2πilj/n =

(

l

n

)

S(n, 1) ,

or more generally, still assuming (n, l) = 1

(6) S(n, la) =

(

l

n

)

S(n, a) .

To find the values of the Gauss sums for general n, we first reduce to prime powers.

Theorem 2. Assume that m and n are coprime, (m,n) = 1. Then

(7) S(mn, l) =
(m

n

)( n

m

)

S(m, l)S(n, l)

The idea of the proof is to parametrize j = hm + kn, where h ∈ Z/nZ and k ∈ Z/mZ. This works,
because the map

j 7→ (j mod n, j mod m) 7→ (m−1 mod n, k−1 mod m)× (j mod n, j mod m)
1
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is 1− 1. The first is 1− 1 by the Chinese remainder theorem, the second, because m ∈ (Z/nZ)× and vice
versa.

S(mn, l) =
∑

j∈Z/mnZ

(

j

mn

)

e2πilj/mn

=
∑

h∈Z/nZ

∑

k∈Z/mZ

(

hm+ kn

m

)(

hm+ kn

n

)

e2πil(hm+kn)/mn

=
∑

h,k

(

kn

m

)(

hm

n

)

e2πilh/ne2πilk/m

=
( n

m

)(m

n

)

∑

h

(

h

n

)

e2πilh/n
∑

k

(

k

m

)

e2πilk/m

�

You can probably see, how this in conjuction with (2) implies the quadratic reciprocity theorem.
Following this line of thought leads to

Theorem 3. Let m,n > 0 be odd, positive integers, that are mutually prime. Then

(8) S(mn, l) =
S(m, l)

εm
· S(n, l)

εn
· εmn .

Prime powers

Now, We are ready to work on S(pν , l). The case ν = 1 is covered by (5), which remains true even if p|l.
In that case, S(p, l) =

∑

j

(

j
p

)

· 1 = 0.

Assume that ν ≥ 2. We parametrize j = ap+ b, where 0 ≤ a < pν−1 and 1 ≤ b ≤ p, and compute

S(pν , l) =

pν−1
−1

∑

a=0

p
∑

b=1

(

ap+ b

p

)ν

e2πila/p
ν−1

e2πilb/p
ν

=

pν−1
−1

∑

a=0

e2πila/p
ν−1

p
∑

b=1

(

b

p

)ν

e2πilb/p
ν

,

Unless pν−1|l, the first sum vanishes; if pν−1 ∤ l, then e2πil/p
ν−1

is a non-trivial root of unity, and we sum
over a number of full circles.

We have established,

(9) If ν ≥ 2 and pν−1 ∤ l, then G(pν , l) = 0 .

As a special case S(p2) = S(p2, 1) = 0, which implies that S(n) = 0, if n is divisible by an integral square.
Finally, write l = λpν−1, obtaining

S(pν , λpn−1) =

pν−1

∑

a=1

1aλ
p
∑

b=1

(

b

p

)ν

e2πiλb/p .

There is the special case p|λ, and we must distinguish between even and odd values of ν. The inner
sum yields

∑p
b=1

(

b
p

)ν

e2πiλb/p p|λ p ∤ λ

2|ν p− 1 −1
2 ∤ ν 0 S(p, λ)
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and the Gauss sum of prime powers becomes

(10)
S(pν , λpν−1) p|λ p ∤ λ

2|ν pν − pν−1 −pν−1

2 ∤ ν 0 pν−1S(p, λ)

It turns out, that (10) also holds for ν = 1.

The Gauss sums needed in the book

From now on, n and ni represent odd integers.
The formula (10 can be reformulated the following way

(11) S(ph, p2ν) =























0 if h > 2ν + 1
p2νS(p, 1) if h = 2ν + 1

0 if 0 < h < 2ν, odd
ph−1 · (p− 1) if 0 < h ≤ 2ν, even

1 if h = 0

and

(12) S(ph, p2ν−1) =























0 if h > 2ν
−p2ν−1 if h = 2ν

0 if 0 < h ≤ 2ν − 1, odd
ph−1 · (p− 1) if 0 < h ≤ 2ν − 1, even

1 if h = 0

Lemma 1. (p. 188-9) If l is squarefree, write n = n0n
2
1, where n0 is squarefree. Then

(13) S(n, l) =

{

εn

(

l
n0

)

µ(n1)
√
n if n1|l

0 otherwise,

where µ is the Möbius function.

Write n1 =
∏

pνii . Then

S(n, l)ε−1
n = S(n0, l)ε

−1
n0

∏

S(p2νii , l)ε−1

p
2νi
i

.

Of course, ε
p
2νi
i

= 1 and εn0n2
1
= εn0

.

If some pi ∤ l then S(p2νii , l) = 0. Since l is squarefree, it also vanishes if νi ≥ 2 It also vanishes, if

pi|n0, but in that case
(

l
n0

)

= 0.

In case n1|l, and no prime pi|n0, we apply S(p2i , l) = −pi, obtaining

S(n, l) =

(

l

n0

)√
n0 εn

∏

(−pi) =

(

l

n0

)

εn
√
n0 µ(n1)n1 .

�
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Computation of bl0p2ν/bl0

The final challenge is to derive the expressions for bl0p2ν/bl0 , where p ∤ l0 or p||l0.
The easy case is p = 2. For odd n, formula (6) results in

(14) S(l02
2ν) =

(

22ν

n

)

S(n, 10) =

(

2ν

n

)2

S(n, 10) = S(n, l0) ,

Thus
bl04ν = C · lk/2−1

0 2(k−2)ν
∑

n

εnn
−k/2S(n,−l0) = 2(k−2)νbl0

The case: Odd p||l0.
Write l0 = l̃0p, so that l = l̃0p

2ν+1, allowing ν = 0. In (2.7) we write n = n0p
h, where p ∤ n0, so that

bl̃0p2ν+1 = C
(

l̃0p
2ν+1

)
k

2
−1∑

n

εknn
−

k

2 S(n,−l)

= Cl
k

2
−1

0 pν·(ki−2)
∑

n0,h

εkn0phn
−

k

2

0 p−
hk

2 S(n0p
h,−l̃0p

2ν+1)

= Cl
k

2
−1

0 pν·(ki−2)
∑

n0,h

εk+1
n0phn

−
k

2

0 p−
hk

2 S(n0,−l̃0p
2ν+1)S(ph,−l̃0p

2ν+1)ε−1
ph ε

−1
n0

= Cl
k

2
−1

0 pν·(ki−2)
∑

n0

(

p

n0

)

ε−1
n0

n
−

k

2

0 S(n0,−l̃0)
∑

h

εk+1
n0phε

−1
ph p

−
hk

2

(

−l̃0
p

)h

S(ph, h2ν+1)

The value of S(ph, h2ν+1) is only non-zero, when h is even. Thus

bl̃0p2ν+1 = Cl
k

2
−1

0 pν·(ki−2)
∑

p∤n

( p

n

)

εknn
−

k

2

∑

h

p
hk

2 S(ph, p2ν+1)

= Cl
k

2
−1

0 pν·(ki−2)
∑

p∤n

( p

n

)

εknn
−

k

2 ·



1 +

ν
∑

j=1

p−kj · (p2j − p2j−1) + p−k(ν+1(−p2ν+1)





The parenthesis can be reduced to

ν
∑

j=0

p(2−k)j −
ν+1
∑

j=1

p(2−k)j−1 = pν·(ki−2)
(

1− p1−k
)

ν
∑

j=0

p(2−k)j .

Finally, we obtain

(15)
bl0p2ν

bl0
= pν·(ki−2)

ν
∑

j=0

p(2−k)j =
ν
∑

j=0

p(k−2)j ,

which is the formula just above (2.24).
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The case: Odd p ∤ l0.

We compute

bl0p2ν = C
(

l0p
2ν
)

k

2
−1 ∑

n0,h

εkn0ph(n0p
h)−

k

2 S(n0p
h,−l0p

2ν)

= Cl
k

2
−1

0 p(k−2)ν
∑

n0,h

εk+1
n0phn

−
k

2

0 p−
hk

2 S(n0,−l0p
2ν)S(ph,−l0p

2ν)ε−1
n0

ε−1
ph

= Cl
k

2
−1

0 p(k−2)ν
∑

n0

ε−1
n0

n
−

k

2

0 S(n0,−l0)
∑

h

εk+1
n0php

−
hk

2

(−l0
p

)h

S(ph, p2ν)ε−1
ph

There is only one odd value of h for which S(ph, p2ν) 6= 0, i.e. h = 2ν + 1. In the evaluation of this
term we need the observation, that since k + 1 is even, and λ = k−1

2 , we can apply ε2n =
(

−1
n

)

to obtain

εk+1
pn =

(−1

pn

)λ+1

=

(−1

p

)λ+1(−1

n

)λ+1

=

(−1

p

)λ+1

· εk+1
n .

The odd addend of the sum gives

εk+1
n0p p

−kν− k

2

(−l0
p

)

p2νεp
√
pε−1

p =

(−1

p

)λ+1

εk+1
n0

(−l0
p

)

p−(k−2)ν−λ = εk+1
n0

χ(p)p−(k−2)ν−λ .

where χ = χ(−)λl0 . Including the even values leads to

(16) bl̃0p2ν = Cl
k

2
−1

0 pν·(k−2)
∑

p∤n

εkn0
n−

k

2 S(n0,−l0)



1 + χ(p)p−(k−2)ν−λ +
ν
∑

j=1

p−kj
(

p2j − p2j−1
)





This is basically (2.28). We obtain

bl̃0p2ν

bl̃0
=

p(k−2)ν
(

1 + χ(p)p−λ +
∑ν

j=1

(

p(2−k)j − p(2−k)j−1
)

)

1 + χ(p)p−λ

=

∑ν
j=0 p

(k−2)j −
∑ν−1

j=0 p
(k−2)j−1 + χ(p)p−λ

1 + χ(p)p−λ

=

ν
∑

j=0

p(k−2)j − χ(p)pλ−1
ν−1
∑

j=0

p(k−2)j

The verification of the last expression is elementary, but not trivial. One needs the relation k = 2λ+ 1.


